SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation
نویسندگان
چکیده
Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017).
منابع مشابه
CNRC at SemEval-2016 Task 1: Experiments in Crosslingual Semantic Textual Similarity
We describe the systems entered by the National Research Council Canada in the SemEval-2016 Task1: Crosslingual Semantic Textual Similarity. We tried two approaches: One computes a true crosslingual similarity based on features extracted from lexical semantics and shallow semantic structures of the source and target fragments, combined using a linear model. The other approach relies on Statisti...
متن کاملLump at SemEval-2017 Task 1: Towards an Interlingua Semantic Similarity
This is the Lump team participation at SemEval 2017 Task 1 on Semantic Textual Similarity. Our supervised model relies on features which are multilingual or interlingual in nature. We include lexical similarities, cross-language explicit semantic analysis, internal representations of multilingual neural networks and interlingual word embeddings. Our representations allow to use large datasets i...
متن کاملUMDeep at SemEval-2017 Task 1: End-to-End Shared Weight LSTM Model for Semantic Textual Similarity
We describe a modified shared-LSTM network for the Semantic Textual Similarity (STS) task at SemEval-2017. The network builds on previously explored Siamese network architectures. We treat max sentence length as an additional hyperparameter to be tuned (beyond learning rate, regularization, and dropout). Our results demonstrate that hand-tuning max sentence training length significantly improve...
متن کاملNeobility at SemEval-2017 Task 1: An Attention-based Sentence Similarity Model
This paper describes a neural-network model which performed competitively (top 6) at the SemEval 2017 cross-lingual Semantic Textual Similarity (STS) task. Our system employs an attention-based recurrent neural network model that optimizes the sentence similarity. In this paper, we describe our participation in the multilingual STS task which measures similarity across English, Spanish, and Ara...
متن کاملECNU at SemEval-2017 Task 1: Leverage Kernel-based Traditional NLP features and Neural Networks to Build a Universal Model for Multilingual and Cross-lingual Semantic Textual Similarity
To model semantic similarity for multilingual and cross-lingual sentence pairs, we first translate foreign languages into English, and then build an efficient monolingual English system with multiple NLP features. Our system is further supported by deep learning models and our best run achieves the mean Pearson correlation 73.16% in primary track.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017